Scheiben: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
K (Die Seite wurde neu angelegt: „Im Sinne der Statik ebene Flächentragwerke, die in ihrer Mittelebene belastet sind. Die Dicke der Scheiben ist überall gleich und so klein, dass die Spannun…“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Im Sinne der Statik ebene Flächentragwerke, die in ihrer Mittelebene belastet sind. | Im Sinne der Statik ebene [[Flächentragwerke]], die in ihrer Mittelebene belastet sind. | ||
Die Dicke der Scheiben ist überall gleich und so klein, dass die | Die Dicke der Scheiben ist überall gleich und so klein, dass die [[Spannung]]en senkrecht zur Mittelfläche mit genügender Genauigkeit vernachlässigt werden dürfen. Es herrscht dadurch ein ebener Spannungszustand. | ||
Die technische Biegelehre setzt voraus, dass die Querschnitte bei der Formänderung eben bleiben. Diese Annahme gilt jedoch nur bis zu einem Verhältnis von Balkenhöhe (H) zur Stützweite (L) von H/L < 1/5. Ist die Balkenhöhe > 1/5 der Stützweite, dann versagt die technische Biegelehre, und die Spannungen müssen aufgrund der Theorie elastischer Scheiben bestimmt werden. | Die technische Biegelehre setzt voraus, dass die Querschnitte bei der Formänderung eben bleiben. Diese Annahme gilt jedoch nur bis zu einem Verhältnis von Balkenhöhe (H) zur Stützweite (L) von H/L < 1/5. Ist die Balkenhöhe > 1/5 der Stützweite, dann versagt die technische Biegelehre, und die Spannungen müssen aufgrund der Theorie elastischer Scheiben bestimmt werden. |
Aktuelle Version vom 12. Februar 2015, 10:29 Uhr
Im Sinne der Statik ebene Flächentragwerke, die in ihrer Mittelebene belastet sind.
Die Dicke der Scheiben ist überall gleich und so klein, dass die Spannungen senkrecht zur Mittelfläche mit genügender Genauigkeit vernachlässigt werden dürfen. Es herrscht dadurch ein ebener Spannungszustand.
Die technische Biegelehre setzt voraus, dass die Querschnitte bei der Formänderung eben bleiben. Diese Annahme gilt jedoch nur bis zu einem Verhältnis von Balkenhöhe (H) zur Stützweite (L) von H/L < 1/5. Ist die Balkenhöhe > 1/5 der Stützweite, dann versagt die technische Biegelehre, und die Spannungen müssen aufgrund der Theorie elastischer Scheiben bestimmt werden.